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What is number theory?

Number theory is the study of whole numbers

. . . ,−3,−2,−1, 0, 1, 2, 3, . . .

and the various patterns that exist in the world of
numbers.
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6, 28, 496, 8128, . . . (Perfect numbers)
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1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16

· · ·

1 + 3 + · · ·+ (2n − 1) = n2
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Perfect numbers can be written as a sum of
consecutive odd cubes starting from 1:

28 = 13 + 33

496 = 13 + 33 + 53 + 73

8128 = 13 + 33 + 53 + 73 + 93 + 113 + 133 + 153
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Patterns in primes?

“There are two facts about the distribution of prime numbers of which I
hope to convince you so overwhelmingly that they will be permanently
engraved in your hearts. The first is that ... they grow like weeds among
the natural numbers, seeming to obey no other law than that of chance,
and nobody can predict where the next one will sprout. The second fact
is even more astonishing, for it states just the opposite: that the prime
numbers exhibit stunning regularity, that there are laws governing their
behavior, and that they obey these laws with almost military precision.”

- Don Zagier

Today: We will explore the patterns between prime numbers and a
sequence of numbers

θ1, θ2, θ3, θ4, θ5, . . .
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The numbers θ1, θ2, θ3 . . .

θ1 = 14.134725 . . . .

θ2 = 21.022039 . . . .

θ3 = 25.010857 . . . .

θ4 = 30.424876 . . . .

θ5 = 32.935061 . . .
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If C = 20, g(t) looks like



If C = 500, g(t) looks like

The red spikes occur at 14.134725, 21.022039,
25.010857 . . . . These are precisely the numbers
θ1, θ2, θ3 . . .!
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Primes and θ1, θ2, . . .

What are the numbers θ1, θ2, . . .?

What is the connection to prime numbers?

Riemann gave a profound answer to these questions
in 1859: both primes and the numbers θ1, θ2, . . . are
realted to a third object: the zeta function ζ(s).



Primes and θ1, θ2, . . .

What are the numbers θ1, θ2, . . .?

What is the connection to prime numbers?

Riemann gave a profound answer to these questions
in 1859: both primes and the numbers θ1, θ2, . . . are
realted to a third object: the zeta function ζ(s).



Primes and θ1, θ2, . . .

What are the numbers θ1, θ2, . . .?

What is the connection to prime numbers?

Riemann gave a profound answer to these questions
in 1859: both primes and the numbers θ1, θ2, . . . are
realted to a third object: the zeta function ζ(s).



The Riemann zeta function

Definition

For a complex number s, we define the Riemann
zeta function by the infinite series

ζ(s) =
∞∑
n=1

1

ns
=

1

1s
+

1

2s
+

1

3s
+ · · ·

This series converges when Re(s) > 1, and defines a
holomorphic function (analogue of a differentiable
function) on this region.
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The Euler product

Theorem (Euler)

We have that

ζ(s) =
∏
p

(
1− 1

ps

)−1
=

(
1− 1

2s

)−1
·
(
1− 1

3s

)−1
·
(
1− 1

5s

)−1
· · ·

This expression takes the shape

Sum over natural numbers = Product over primes
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Values of ζ

Euler also computed

ζ(2) =
1

12
+

1

22
+

1

32
+

1

42
+ · · · = π2

6
.

ζ(4) =
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44
+ · · · = π4

90

ζ(6) =
1

16
+

1

26
+

1

36
+

1

46
+ · · · = π6

945
.

In general, he showed that

ζ(2k) =
1

12k
+

1

22k
+

1

32k
+

1

42k
+ · · · = π2k · x

for some x ∈ Q.
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Zeta at negative integers

Euler also developed a method to sum the divergent
series obtained when we substitute negative values
in the definition of ζ(s).

He claimed that

1 + 2 + 3 + 4 + · · · = − 1

12

12 + 22 + 32 + 42 + · · · = 0

13 + 23 + 33 + 43 + · · · = 1

120
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Euler’s functional equation

For n = 1 +m, Euler proved the relation

⊙
%

= −1 · 2 · 3 · · · (n − 1)

(2n−1 − 1)πn
(2n − 1) cos

(nπ
2

)
.

On 25th July 1748, Euler had observed a solar
eclipse!
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Riemann’s 1859 memoir

▶ Riemann extended the zeta function to all of
C \ {1}.

It turns out that indeed,

ζ(−1) = − 1

12
, ζ(−2) = 0, ζ(−3) = 1

120
.

▶ He also showed that we have a symmetry:

ζ(s)←→ ζ(1− s).

More precisely,

π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s) = π−s/2Γ

(s
2

)
ζ(s),

where Γ(s) is the celebrated Gamma function
defined by Γ(s) =

∫∞
0 x s−1e−xdx .



Riemann’s 1859 memoir

▶ Riemann extended the zeta function to all of
C \ {1}. It turns out that indeed,

ζ(−1) = − 1

12
, ζ(−2) = 0, ζ(−3) = 1

120
.

▶ He also showed that we have a symmetry:

ζ(s)←→ ζ(1− s).

More precisely,

π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s) = π−s/2Γ

(s
2

)
ζ(s),

where Γ(s) is the celebrated Gamma function
defined by Γ(s) =

∫∞
0 x s−1e−xdx .



Riemann’s 1859 memoir

▶ Riemann extended the zeta function to all of
C \ {1}. It turns out that indeed,

ζ(−1) = − 1

12
, ζ(−2) = 0, ζ(−3) = 1

120
.

▶ He also showed that we have a symmetry:

ζ(s)←→ ζ(1− s).

More precisely,

π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s) = π−s/2Γ

(s
2

)
ζ(s),

where Γ(s) is the celebrated Gamma function
defined by Γ(s) =

∫∞
0 x s−1e−xdx .



Zeros of the zeta function
Riemann discovered that there is a deep connection between zeros of
ζ(s) and prime numbers.

He computed the first few zeros the zeta
function to be:
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+ (14.134725 . . .)i

1

2
+ (21.022039 . . .)i

1

2
+ (25.010857 . . .)i

1

2
+ (30.424876 . . .)i

. . .

The imaginary parts of the zeros are exactly the θi ’s!
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Riemann von-Mangoldt explicit formula

Theorem

We have that∑
pm≤x

log p

= x −
∑
ρ

xρ

ρ
+
∞∑

m=1

x−2m

2m
+ log(2π),

where the sum on the RHS is over all zeros ρ of
ζ(s) in the critical strip.

This formula is of the shape

Primes = Zeros
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The Riemann Hypothesis

Let s be a zero of ζ(s) in the region
0 ≤ Re(s) ≤ 1. Then

Re(s) =
1

2
.
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How good is this approximation?

Let
Error(x) = |π(x)− Li(x)| .

We have that
Li(x) ≈ x

log x
but at present, we cannot even show that

Error (x) ≤ x0.99999

The Riemann Hypothesis implies that

Error(x) ≤ 1

8π

√
x log x for all x ≥ 2687.
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Prime number races

We can divide all odd prime numbers into two
teams: “Team 1” consisting of those prime numbers
which are 1 mod 4, and ”Team 3” consisting of
those prime numbers which are 3 mod 4.

▶ For x < 26861, Team 3 is in the lead

▶ At x = 26861, Team 1 is in the lead for an
instant.

▶ At x = 26863, Team 3 catches up.

▶ At x = 26879, Team 3 gets ahead.

▶ For 267879 < x < 616841, Team 3 is always in
the lead.
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Chebyshev’s bias

There is a clear bias towards Team 3.

How do we express this bias? In
2022, Miho Aoki and Shin-ya Koyama suggested that we consider

T3(x) =
∑

p≤x,p in Team 3

1
√
p

T1(x) =
∑

p≤x,p in Team 1

1
√
p

During my PhD studies I showed the following: Assume the Riemann
Hypothesis. There is a constant M such that “for most x”:

T3(x)− T1(x) =
1
2 log log x +M + Error(x).

Shin-ya Koyama will be speaking at the Warwick Number Theory

Seminar on 24th Feb (3pm to 4pm in B3.02)!
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Evidence for the Riemann Hypothesis

▶ We have verified that the first 12 trillion zeros
lie on the line Re(s) = 1

2 !

▶ Many of the predictions that the Riemann
Hypothesis makes, have later been proven
(unconditionally).

▶ Weil’s Rosetta stone. There is close analogy

Z←→ polynomials with coefficients in Z/pZ,

where primes correspond to irreducible
polynomials. The analogue of the Riemann
Hypothesis has been proven in this setting!
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How to prove the Riemann Hypothesis?

The Riemann zeta function is just one example in a
whole collection of functions called L-functions.

These are functions of the form
∞∑
n=1

an
ns

that have

▶ Euler product

▶ Analytic continuation

▶ Functional Equation
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Where do L-functions come from?

▶ This is an active area of research today and is
known as the Langlands program.

▶ It is conjectured that every L-function comes
from a class of objects known as cuspdial
automorphic representations.

▶ The study of these objects has been fruitful so
far and may lead to further progress...



Where do L-functions come from?

▶ This is an active area of research today and is
known as the Langlands program.

▶ It is conjectured that every L-function comes
from a class of objects known as cuspdial
automorphic representations.

▶ The study of these objects has been fruitful so
far and may lead to further progress...



Where do L-functions come from?

▶ This is an active area of research today and is
known as the Langlands program.

▶ It is conjectured that every L-function comes
from a class of objects known as cuspdial
automorphic representations.

▶ The study of these objects has been fruitful so
far and may lead to further progress...



Thank you!


